

Arginine methylation and QUAKING as regulators of CNS myelination

Oligodendrocytes are the myelinating cells of the central nervous system (CNS). I will present two different pathways that regulate oligodendrocyte differentiation impacting CNS myelination in mice. It is known that the quaking viable mice display tremors by post-natal day 10 due to a lack in oligodendrocyte differentiation. The qkI gene encodes several spliced isoforms of the QKI RNA binding proteins. QKI-5 is exclusively nuclear, while QKI-6 is distributed throughout the cell, and QKI-7 is predominantly cytoplasmic. The QKI isoforms interact with ACUAAY-(N1-20)-UAAY (QKI Response Element). I will discuss the phenotype of the conditional deletion of QKI isoforms leading to alternative splice regulation of axoglial proteins for oligodendrocyte development and maintenance in adults. Arginines can either be ω -N G-monomethylated, asymmetrically ω -N G,N G-dimethylated arginines or symmetrically ω -N G,N' G-dimethylated arginines by protein arginine methyltransferases. I will discuss the role of PRMT5 as a key regulator of CNS myelination and define its mechanism of action

Dr. Stéphane Richard

Terry Fox Molecular Oncology Group Bloomfield Center on Research on Aging Segal Cancer Centre James McGill Professor, McGill University Senior Investigator and Associate Director, Lady Davis Institute

Host: Dr. Ben Blencowe

Date: Monday May 8th, 2017 Time: 2PM Place: Donnelly Centre CCBR Red Seminar Room, 160 College Street